

Dhinaharan Nagamalai et al. (Eds) : ACSIT, SIPM, ICITE, ITCA - 2019

pp. 147–158, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.90313

INTERSECTION TYPE SYSTEM AND LAMBDA

CALCULUS WITH DIRECTOR STRINGS

Xinxin Shen and Kougen Zheng

Department of Computer Science and Technology,

Zhejiang University, Hangzhou, China

ABSTRACT

The operation of substitution in 𝜆-calculus is treated as an atomic operation. It makes that

substitution operation is complex to be analyzed. To overcome this drawback, explicit

substitution systems are proposed. They bridge the gap between the theory of the 𝜆-calculus and

its implementation in programming languages and proof assistants. 𝜆𝑜-calculus is a name-free

explicit substitution. Intersection type systems for various explicit substitution calculi, not

including λo-calculus, have been studied by researchers. In this paper, we put our attention to

𝜆𝑜-calculus. We present an intersection type system for 𝜆𝑜-calculus and show it satisfies the

subject reduction property.

KEYWORDS

Intersection type, Lambda calculus, Director strings, Subject reduction

1. INTRODUCTION

In 𝜆-calculus [1], the operation of substitution is treated as an atomic operation. But in the

presence of variable binding, substitution is a complex operation to define and implement and

may cause size explosion. Therefore, substitutions are delayed and explicitly recorded, in

practice. Contrast to the 𝜆-calculus, explicit substitution decomposes the higher-order substitution

operation into more atomic steps. In these last years, several explicit substitution systems have

been proposed [2-5]. They are divided into two kinds: named, such as λx𝑔𝑐, and unnamed, such

as 𝜆𝑠𝑒, 𝜆𝜎. Director strings were introduced by Kennaway and Sleep [6] and generalized by

Sreedhar and Taghva [7] to capture strong reduction. Fern𝑎́ndez et al. [8-9] present the open

calculus λ𝑜 which can fully simulate the 𝛽-reduction. 𝜆𝑜-calculus offers an alternative to de

Bruijn notation [10] for unnamed calculi. Terms are annotated by director strings which indicate

how the substitutions should do. All these explicit substitution calculi provide bridges between

formal calculus and their concrete implementations. They lead to a more pertinent analysis of the

correctness and efficiency of compilers, theorem proves, and proof-checkers.

Intersection type was introduced in [11-12] to overcome the limitations of Curry’s type

assignment system and to provide a characterization for the solvable terms of the λ-calculus. It

extends simple types to include intersections and adds corresponding rules to the type assignment

system. It has been used to characterize strongly (weakly or head) normalizing or solvable terms

in many variants of the 𝜆-calculus [13-15] and to prove properties in λ-calculus, such as

termination [16]. Moreover, approximation theorem, which is an important result in λ-calculus,

also can be proved by intersection types [17].

148 Computer Science & Information Technology (CS & IT)

Related works. Several intersection types for explicit substitution were studied. Dougherty and

Lescanne [18] studied the relationship between intersection types and reduction (left reduction

and head reduction) of λx.Lengrand [13] characterized strongly normalizing terms of λxgcwith

intersection types.Ventura et al. [19] presented an intersection type system for λdband showed the

subject reduction property. Ventura et al. [20] introduced intersection type systems for

𝜆𝑠𝑒 , 𝜆𝜎, 𝜆𝜈-calculus and proved the subject reduction property for them. The intersection type

system in [20] cannot be directly adapted to 𝜆𝑜-calculus because there are no number indexes for

variables. We cannot find the type of the variable from the type environment considered by

searching the index. So, the difficulty for the intersection type system for 𝜆𝑜is to build the

correspondence from variables to the type environment.

To our knowledge the intersection type system for 𝜆𝑜-calculus has not been studied. In this paper,

we introduce an intersection type system for 𝜆𝑜-calculus and prove the subject reduction property.

The rest of this paper is structured as follows. In Section 2, we provide the term syntax of 𝜆𝑜-

calculus. We present the intersection type system for 𝜆𝑜- calculus and show the subject reduction

property in Section 3. We conclude in Section 4.

2. LAMBDA CALCULUS WITH DIRECTOR STRINGS 𝛌𝒐

2.1. Term Syntax

We recall some definitions and properties of the λo from [8], adding some notations.

Definition 1. (𝛌-calculus with Director Strings [8])

Four syntactic categories are defined:

• Directors: We use five special symbols, called directors, ranged over by 𝛼, 𝛾, 𝛿:
1. ‘↘’ indicates that the substitution should be propagated only to the right branch of a binary

construct (application or substitution, as given below).

2. ‘↙’ indicates that the substitution should be propagated only to the left branch of a binary

construct.

3. ‘⇄’ indicates that the substitution should be propagated to both branches of a binary construct.

4. ‘↓’ indicates that the substitution should traverse a unary construct (abstraction and variables,

see below).

5. ‘−‘ indicates that the substitution should be discarded (when the variable concerned does not

occur in a term).

• Strings: A director string is either empty, denoted by ϵ, or built from the above symbols (so is

of the form 𝛼1𝛼2 ⋯ 𝛼𝑛 where the 𝛼𝑖 's are directors). We use Greek letters such as 𝜌, 𝜎 ... to

range over strings.

• The length of a string σ is denoted by |σ|. If 𝛼 is a director, then αn denotes a string of 𝛼 's of

length n. If 𝜎 is a director string of length 𝑛 and 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 , 𝜎𝑖 denotes the 𝑖 th director

of 𝜎 and 𝜎\𝑖 = 𝜎1 ⋯ 𝜎𝑖−1𝜎𝑖+1 ⋯ 𝜎𝑛 is σ where the i th director has been removed. 𝜎𝑖..𝑗 =

𝜎𝑖 ⋯ 𝜎𝑗 is our notation for substrings. We use 𝜎+ to represent the σ where all - have been

removed.

Computer Science & Information Technology (CS & IT) 149

|𝜎|𝑙 denotes the number of ↙ and ⇄ occurring in σ , |𝜎|𝑟 the number of ↘ and ⇄, |𝜎|𝑙𝑟 the

number of ⇄, and |𝜎|+ the number of directors that are not −. |𝜎|− is the number of directors

that are −.

• Preterms: Let σ range over strings, k be a natural number and 𝒕, 𝒖 range over preterms, which

are defined by the following grammar: 𝑡: : = □𝜎| (𝜆 𝑡)𝜎|(𝑡𝑢)𝜎| 𝑡[𝑘/𝑢]^𝜎 .

• Terms: Well-formed terms are preterms that recursively satisfy the conditions in Figure 1.

where 𝒰 = (↓ | −)∗ and ℬ = (↙ | ⇄ | ↘ | −)^ ∗ .

Figure 1.Term Condition

A variety of different term constructs [8]:

• □presents variables,

• (𝜆𝑡𝜌)𝜎 is an abstraction,

• (𝒕𝒖)𝜎 is an application,

• 𝒕[𝑘/𝒖]𝜎 is an explicit substitution, meaning that the variable corresponding to the 𝑘𝑡ℎ

director in 𝒕's string is to be replaced by 𝒖 .

Remark 1.

• Given a term 𝑡𝜌, |𝜌|+ is equal to the number of free variables in 𝑡.

• In an abstraction (𝜆𝑡𝜌)𝜎, the last director in 𝜌 corresponds to the bound variable.

• Parentheses will be dropped whenever we can, and omit the empty string 𝜖 unless it is

essential.

We give an example:

Example 1. If we consider variables {𝑦, 𝑧, 𝑤} , and the pure λ -term 𝑡 = 𝜆 𝑥. 𝑥𝑦𝑤. The term in

λ𝑜-calculus corresponding to (use the function defined in [8]) 𝑡 is ((λ (□↓□↓)↘ ↙□↓)↙ ↘ ↙)↓− ↓ .

2.2. Reduction rules

The Beta rule is aimed at eliminating β-redexes and introduce an explicit substitution. It is

defined by

150 Computer Science & Information Technology (CS & IT)

where 𝜏 = 𝜓𝑏(𝜎, 𝜌)with 𝜑𝑏 defined in Figure 2.

Definition 2. (Reduction Rules [8])

Reduction rules in 𝜆𝑜 contain the Beta rule and propagation rules in

Figure 2 with:

Other functions used in the propagation rules are defined in

Figure 3. The functions used in the propagation rules just compute the ad hoc director strings.

They are generated recursively in the same way as above from the tables

Figure 3 [8].

Figure 2. Propagation Rules 𝒫

Figure 3. Functions used in the Propagation Rules

Computer Science & Information Technology (CS & IT) 151

3. THE TYPE SYSTEM

3.1 Intersection Types

We take the idea from [20]. Environments are sequences of types instead of type assignments and

types are non-idempotent intersection types [21].

 Definition 3.

1. Intersection types are defined by:

𝜚, 𝜍 ∈ 𝕋 ∷= 𝒜 | 𝕌 → 𝕋

𝜇, 𝜉 ∈ 𝕌 ∷= Ω 𝕌 ∩ 𝕌 | 𝕋

where 𝒜 is a denumerable infinite set of type variables.

2. Environments are ordered lists of types 𝜇 ∈ 𝕌 , defined by Γ ∶: = 𝑛𝑖𝑙 | 𝜇. Γ . nil is the empty

environment. We use Γ, Δ..to denote environments.

3. A term t is typable if there are some Γ, 𝜚 such that Γ ⊢ 𝒕: 𝜚 .

|Γ| is the length of Γ and |𝑛𝑖𝑙| = 0. Γ𝑖 is the i th type in Γ. Γ<𝑖 is the first 𝑖 − 1 types in Γ and

Γ≤𝑖, Γ>𝑖, Γ≥𝑖 are similarly defined. If 𝑖 = 0, then Γ≤0 . Γ = Γ<0. Γ = Γ. If 𝑖 is equal to the length

of Γ, then Γ. Γ≥𝑖 = Γ. Γ>0 = Γ.

Γ∖𝑖 = Γ<𝑖 . Γ>𝑖, is Γ where the 𝑖 th type has been removed. Γ𝑖..𝑗 = Γ𝑖 . ⋯ . Γ𝑗, is a sub-environment

of Γ. Γ+ is Γ where all − has been removed. Ω𝑛 denotes the environment Ω. ⋯ . Ω of length

𝑛.

3.2 Type System for 𝝀𝒐

We first define some functions which will be used in defining the typing rules. It gets a new

environment from two environments according to a director string.

Definition 4. The function Intersection(Γ, Δ, 𝜎) is defined by Algorithm 1.

152 Computer Science & Information Technology (CS & IT)

Definition 5. The function AddErase (Γ, 𝜎) is defined by Algorithm 2.

Definition 6. The function Drop(Γ, 𝜎) is defined by Algorithm 3.

Definition 7. (Typing Rules)

Typing rules for λo are defined by Figure 4 where (*) is 𝜌 =𝜎_+ and functions are defined in

Definition 4, Definition 5 and Definition 6.

Figure 4. Typing Rules

Lemma 1. (Generation Lemma)

1. 𝛤 ⊢ 𝑡^𝜎: 𝜚 and𝜌 = 𝜎+ , then Γ = AddErase(𝛤′, 𝜎) and Γ′ ⊢ 𝑡𝜌: 𝜚.

2. 𝛤 ⊢ □^𝜎: 𝜚, if 𝜎𝑖 ≠ − then𝛤𝑖 = 𝜚.

3. 𝛤 ⊢ (𝜆𝒕)𝜎 ∶ 𝜚, then 𝜚 = 𝜇 → 𝜍 for some 𝜇 ∈ 𝕌 and 𝜍 ∈ 𝕋 , where 𝛤+. 𝜇 ⊢
 𝑡𝜌: 𝜚.

4. 𝛤 ⊢ (𝒕𝒖)𝜎 ∶ 𝜚, then 𝛤 = Intersection(𝛤′, 𝛥′, 𝜎) such that 𝛤′ ⊢ 𝒕: ∧ 𝜍𝑘 → 𝜚,
𝛥′ = ∩1

𝑛 𝛥𝑘 and ∀ 1 ≤ 𝑘 ≤ 𝑛, 𝛥𝑘 ⊢ 𝒖: 𝜍𝑘.

Computer Science & Information Technology (CS & IT) 153

5. 𝛤 ⊢ (𝑡𝜌[𝑖/ 𝒖])𝜎: 𝜚 and 𝜌𝑖 ≠ − , then 𝛤 = Intersection(𝛤∖𝑖
′ , 𝛥′, 𝜎) such that

𝛤<𝑖
′ .∧ 𝜍𝑘 . 𝛤>𝑖 ⊢ 𝒕: 𝜚, 𝛥′ = ∩1

𝑛 𝛥𝑘 and ∀ 1 ≤ 𝑘 ≤ 𝑛, 𝛥𝑘 ⊢ 𝒖 }: 𝜍𝑘.

6. 𝛤 ⊢ (𝑡𝜌[𝑖/ 𝒖]))𝜎: 𝜚 and ρi = − , then (Γ≤|ρ|)∖i
⊢ tρ: ϱ and 𝛥 ⊢ 𝒖: 𝜍.

Proof. By induction on the structure of derivations.

Lemma 2. 𝜞 ⊢ 𝒕𝝆: 𝝔 , then |𝛤| = |𝜌| and the 𝛤𝑖 is the type of the variable which 𝜌𝑖

corresponds to.

Proof. Induction on the structure of tρ.

1. □𝜌, it is immediately.

2. (𝜆𝑡𝜌)𝜎. By Lemma 1 𝛤+. 𝜇 ⊢ 𝑡𝜌: 𝜚 for some μ ∈ 𝕌 and ς ∈ 𝕋, where ϱ = μ →
ς. By induction hypothesis, |Γ+. μ| = |ρ| and Γ+i is the type of ρ𝑖. By term

conditions, |ρ| = |σ|+ + 1. From the definition of AddErase, we can

get |Γ| = |σ| and Γi is the type ofσi.

3. (t𝜌uν)σ. By Lemma 1, Γ = Intersection(Γ′, Δ′, σ) such that Γ′ ⊢ t𝜌 : ∧ ςk →

ϱ, Δ′ = ∩1
n Δk and ∀ 1 ≤ k ≤ n, Δk ⊢ 𝑢𝜈 ∶ ςk . By induction hypothesis,

|Γ′| = |ρ| = |σ|l , Γi
′ is the type of the variable which ρi corresponds to and

|Δ′| = |Δk| = |ν| = |σ|r , Δi
′ is the type of the variable which νi corresponds

to. From the definition of the function Intersection, we easily get

|Intersection(Γ′, Δ′, σ)| = |σ| and Γi is the type of the variable whichσi

corresponds to.

4. Γ ⊢ (t𝜌[i/𝐮])𝜎: ϱ and ρi ≠ −, it is similar to the last case.

5. Γ ⊢ (t𝜌[i/𝐮])𝜎: ϱ and ρi = −, it is immediately by induction hypothesis and the

reduction rule.

Theorem 1. (Subject Reduction)

Proof. By the verification of subject reduction for each reduction rule of the λo-calculus.

• (Beta): Let Γ ⊢ ((λ 𝐭)ρ𝐮)^σ ∶ ϱ . We want to prove that Γ ⊢ (𝐭[|ρ|+ + 1 / 𝐮])𝜏: ϱ. By

Lemma 1, we have the following derivation:

By Lemma 2, |Γ′| = |ρ| and Γi
′ is the type of the variable which ρi corresponds to. Γ1 =

 Intersection}(Γ2, Δ′, τ) ⊢ (𝐭[|ρ|+ + 1 / 𝐮])τ: ϱ by rule (cut). Suppose the variable σi

corresponding to is x, observing the procedure and the definition of φb:

1. 𝜎𝑖 = ↘. Then 𝜏𝑖 = ↘; Γ1𝑖 = Δ′
|𝜏1..𝑖|𝑟

. Γ𝑖 = Δ′
|𝜎1..𝑖|𝑟

. They are the type of 𝒖𝑥

(variable 𝑥 in 𝒖). Γ1𝑖 = Γ𝑖 .

154 Computer Science & Information Technology (CS & IT)

2. 𝜎𝑖 = ↙. 𝜎𝑖 indicates the substitution is propagated to the left branch of ((𝜆𝒕)𝜌𝒖).

If 𝜌𝑖 ≠ −, 𝜏𝑖 = ↙ = 𝜎𝑖. Γ𝑖 is the type of 𝒕𝑥. Let 𝑚 = |𝜎1..𝑖|𝑙 and 𝑛 = |𝜌1..𝑚|+ .

Γ𝑖 = Γ2𝑛. 𝜏𝑖 indicate the substitution is propagated to the left branch 𝒕. It is the

type of 𝒕𝑥. Γ1𝑖 = Γ2|𝜏1..𝑖|𝑙
 . If 𝜌𝑖 = −, then 𝜏𝑖 = −. The variable does not occur

in the two terms. Then Γ𝑖 = Ω = Γ1𝑖.

3. 𝜎𝑖 = ⇄ indicates the substitution should be propagated into both branches. If 𝜌𝑖 ≠
 −, 𝜏𝑖 = ⇄.Let 𝑚 = |𝜎1..𝑖|𝑙 and 𝑛 = |𝜎1..𝑖|𝑟. 𝑝 = |𝜌1..𝑚|+ . Γ𝑖 = Γ2𝑝 ∩ (∩

Δk)
n
. It is intersection of the type of 𝒕𝑥 and 𝒖𝑥.𝜏𝑖 = ⇄ indicate the substitution

should be propagated into both branches. Let 𝑚′ = |𝜏1..𝑖|𝑙 and 𝑛′ = |𝜏1..𝑖|𝑟.

Γ1𝑖 = Γ2𝑚′ ∩ (∩ Δ𝑘)
𝑛′ . It is intersection of the type of 𝒕𝑥 and 𝒖𝑥. If 𝜌𝑖 = −,

𝜏𝑖 = ↘. Then Γ1𝑖 = Δ|𝜏1..𝑖|𝑟

′ , it is the type of 𝒖𝑥. Γ𝑖 = Δ|𝜎1..𝑖|𝑟

′ , it is also the type of

𝒖𝑥.

4. 𝜎𝑖 = −, then 𝜏𝑖 = −. So Γ1𝑖 = Γ𝑖.

Therefore, Γ = Γ1.

• (Var): Let Γ ⊢ (□𝜌[𝑖/ 𝒗])𝜎: 𝜚 and 𝜌𝑖 = ↓. We want to prove that Γ ⊢ 𝒗: 𝜚.By

Lemma 1, Γ = Intersection(Γ∖𝑖
′ , Δ′, 𝜎), Γ<𝑖

′ .∧ 𝜍𝑘 . Γ>𝑖
′ ⊢ □𝜌 ∶ 𝜚 and ∀ 1 ≤ 𝑘 ≤

 𝑛Δ𝑘 ⊢ 𝒗: 𝜍𝑘.By term definition, 𝜌𝑗 = − for all𝑗 ≠ 𝑖. So Γ∖𝑖
′ =

Ω|𝜌|−1.Observing the procedure of function Intersection.

 𝜎𝑖 = ⇄ or 𝜎𝑖 = ↘ . Γ𝑖 = Ω ∩ Δ|𝜎1..𝑖|𝑟

′ = Δ|𝜎1..𝑖|𝑟

′ . i.e. Γ𝑖 is type of the {|𝜎1..𝑖|𝑟th

variable.

 𝜎𝑖 = − or 𝜎𝑖 = ↙. Γ𝑖 = Ω.

By Lemma 2, it coincides with the definition of 𝜋′.

• (Erase): Let Γ ⊢ (𝑡𝜌[𝑖/𝒗])𝜎: 𝜚 and 𝜌𝑖 = −. We want to prove that Γ ⊢ 𝑡𝜏 ∶ 𝜚.By

Lemma 1, and Lemma 2, it is easily to get that Drop(Γ, 𝜎) is coincides with 𝜋.

• (Lam): Let Γ ⊢ ((𝜆𝒕)𝜌[𝑖/ 𝒗])𝜎: 𝜚 and 𝜌𝑖 = ↓. We want to prove that Γ ⊢ (𝜆(𝒕[𝑖/
 𝒗])𝜈.↙)𝜏: 𝜚.By Lemma 1, we have the following derivation:

where 𝜇 → 𝜁 = 𝜚. Hence

Observing the definition of 𝜙𝑑, there are no − 's in 𝜈. Suppose the 𝑗 th variable is 𝑥.

Computer Science & Information Technology (CS & IT) 155

1. 𝜎𝑗 = ↙, 𝜌𝑗 = −, 𝜈𝑗 = 𝜖, 𝜏𝑗 = −. Γ2𝑗 = Ω = Γ𝑗.

2. 𝜎𝑗 = ↙, 𝜌𝑗 = ↓, 𝜈𝑗 = ↙, 𝜏𝑗 = ↓.𝜎𝑗 = ↙ indicates the substitution is propagated to the

left branch (𝜆 𝒕)𝜌. Let 𝑚 = |𝜎1..𝑗|
𝑙
. Γ𝑗 is type of the variable 𝜌𝑚 corresponding to,

indicated by 𝒕𝑥 (variable 𝑥 in 𝒕). Γ𝑗 = Γ∖𝑖
′

𝑚
. 𝜈𝑗 = ↙ indicates the substitution is

propagated to the left branch 𝒕. Γ2𝑗 is the the type of 𝒕𝑥. Let 𝑚′ = |𝜏1..𝑗|
+

 and 𝑛′ =

 |𝜈. ↙ |𝑙. Γ2𝑗 = Γ1𝑚′ = Γ∖𝑖
′

𝑛′.

3. 𝜎𝑗 = ↘, 𝜌𝑗 = 𝜖, 𝜈𝑗 = ↘, 𝜏𝑗 = ↓. Let 𝑚 be |𝜏1..𝑗|
+

. The type of Γ2𝑗 = Γ1𝑚 =

Δ|𝜈1..𝑚|𝑟

′
. Γ𝑗 = Δ|𝜎1..𝑗|

𝑟

′
. 𝜎𝑗 = ↘ indicates the substitution is propagated to the right

branch 𝒗. Let 𝑚 = |𝜎1..𝑗|
𝑟
. Γ𝑗 is the type of 𝒗𝑥. Γ𝑗 = (∩ Δ𝑘)

𝑚
. 𝜈𝑗 = ↘ indicates

the substitution is propagated to the right branch 𝒗. Γ2𝑗 is the type of 𝒗𝑥. Let 𝑚′ =

 |𝜏1..𝑗|
+

 and 𝑛′ = |𝜈. ↙1..𝑗|
𝑙
. Γ2𝑗 = Γ1𝑚′ = Γ∖𝑖

′

𝑛′
.

4. 𝜎𝑗 = ⇄, 𝜌𝑗 = ↓, 𝜈𝑗 = ⇄, 𝜏𝑗 = ↓. 𝜎𝑗 = ⇄ indicates the substitution is propagated to

both branches 𝒕 and 𝒗. Let 𝑚 = |𝜎1..𝑗|
𝑙
, 𝑛 = |𝜎1..𝑗|

𝑟
. Γ𝑗 is intersection of the type

of 𝒕𝑥 and 𝒖𝑥. Γ𝑗 = Γ∖𝑖
′

𝑚
∩ (∩ Δ𝑘)

𝑛
 . 𝜈𝑗 = ⇄, 𝜏𝑗 = ↓ indicates the substitution is

propagated to both branches 𝒕 and ↘. Γ2𝑗is intersection of the type of 𝒕𝑥 and 𝒗𝑥. Let

𝑚′ = |𝜏1..𝑗|
+

, 𝑛′ = |𝜈. ↙1..𝑚|𝑙 , 𝑝′ = |𝜈. ↙1..𝑚|𝑟. Γ2𝑗 = Γ1𝑚 = Γ∖𝑖
′

𝑛′ ∩ (∩ Δ𝑘)
𝑝′.

5. 𝜎𝑗 = ⇄, 𝜌𝑗 = − , 𝜈𝑗 = ↘, 𝜏𝑗 = ↓. 𝜎𝑗 =⇄ indicates the substitution is propagated to

both branches 𝒕 and 𝒗. Γ𝑗 is intersection of the type of 𝒕𝑥 and 𝒗𝑥. 𝜌𝑗 = −, the type

of 𝒕𝑥 is Ω. So Γ𝑗 is the type of 𝒗𝑥 . Let 𝑛 = |𝜎1..𝑗|
𝑟
 , Γ𝑗 = (∩ Δ𝑘)

𝑛
.Let 𝑚′ =

|𝜏1..𝑗|
+

, 𝑛′ = |𝜈1..𝑚|𝑟. The substitution is propagated to right branch 𝒗. Γ2𝑗is the type

of 𝒗𝑥 . Γ2𝑗 = Γ1𝑚 = (∩ Δ𝑘)
𝑛′.

6. 𝜎𝑗 = −, 𝜌𝑗 = 𝜖, 𝜈𝑗 = 𝜖, 𝜏𝑗 = −. Γ2𝑗 = Ω = Γ𝑗 .

So Γ2 = Γ.

• 𝐴𝑝𝑝1, 𝐴𝑝𝑝2, 𝐴𝑝𝑝3 and Comp are similar. We just show the case 𝐴𝑝𝑝1. Let Γ ⊢
 ((𝒕𝒖)𝜌[𝑖/𝒗])𝜎: 𝜚 and 𝜌𝑖 = ↙. We want to prove that Σ ⊢ ((𝒕[𝑗/𝒗])𝜈𝒖)𝜏: 𝜚. By Lemma 1,

we have the following derivation.

Hence

156 Computer Science & Information Technology (CS & IT)

For better reading, we use variable names. Suppose the 𝑚th variable is 𝑥.

1) 𝜎𝑚 = −, 𝜌𝑚 = 𝜖, 𝜈𝑚 = 𝜖, 𝜏𝑚 = − . The 𝑚 th variable does not occurs in ((𝒕𝒖)𝜌[𝑖/
𝒗])𝜎 and ((𝒕[𝑗/𝒗])𝜈𝒖)𝜏. Γ𝑚

′ = Γ𝑚 = Ω.

2) 𝜎𝑚 = ↙ . The 𝑚 th substitution is only considered on the left branch of ((𝒕𝒖)𝜌[𝑖/𝒗])𝜎.

It is the 𝑛 = |𝜎1..𝑚|𝑙th in 𝜌.

a. 𝜌𝑚 = ↘, 𝜈𝑚 = 𝜖, 𝜏𝑚 = ↘. The 𝑛 th substitution is only considered on the right brach

of 𝒕𝒖. It is the 𝑝 = |𝜌1..𝑛|𝑟 th in 𝒖 's director string. The variable 𝜌𝑝 corresponding to

is denoted by 𝒖𝑥 (variable 𝑥 in 𝒖). So Γ𝑚 = (∩ Δ𝑘)
𝑝
 . It is the type of 𝒖𝑥. The 𝑚 th

substitution is only considered on the right branch of ((𝒕[𝑗/𝒗])𝜈𝒖). It is the 𝑛′ =
 |𝜏1..𝑚|𝑟th in 𝒖 's director string. So Γ𝑚

′ = (∩ Δ𝑘)
𝑛′. It is the type of 𝒖𝑥.

b. 𝜌𝑚 = ↙, 𝜈𝑚 = ↙, 𝜏𝑚 = ↙. The 𝑛th substitution is only considered on the left brach of

𝒕𝒖. It is the 𝑝 = |𝜌1..𝑛|𝑙th in 𝒕 's director string. The variable is denoted by 𝒕𝑥. Γ𝑚 =
Γ1𝑝 and it is the type of 𝒕𝑥. The 𝑚 th substitution is only considered on the left branch

of ((𝒕[𝑗/𝒗])𝜈𝒖). It is the 𝑛′ = |𝜏1..𝑚|𝑙th in (𝒕[𝑗/𝒗]). Then it is the 𝑝′ = |𝜈1..𝑛′|𝑙 in 𝒕

's string. So Γ𝑚
′ = Γ1𝑝′ and it is the type of 𝒕𝑥.

c. 𝜌𝑚 = ⇄, 𝜈𝑚 = ↙, 𝜏𝑚 = ⇄ . The 𝑛 th substitution is considered both on the left and

right braches of 𝒕𝒖. It is the 𝑝 = |𝜌1..𝑛|𝑙th in 𝒕 's string and 𝑞 = |𝜌1..𝑛|𝑟th in 𝒖 's

string. Γ𝑚 = Γ1𝑝 ∩ (∩ Γ𝑘)
𝑞
. It is intersection of the type of 𝒕𝑥 and 𝒖𝑥 . The 𝑚 th

substitution is considered both on the left and right branches of ((𝒕[𝑗/𝒗])𝜈𝒖). It is the

𝑛′ = |𝜏1..𝑚|𝑙th in 𝜈. Then it is the 𝑝′ = |𝜈1..𝑛′|𝑙 in 𝒕 's string. 𝑞′ = |𝜏1..𝑚|𝑟 in 𝒖's

string. So Γ𝑚
′ = Γ1𝑝′ ∩ (∩ Γ𝑘)

𝑞′. It is intersection of the type of 𝒕𝑥 and 𝒖𝑥.

d. 𝜌𝑚 = −, 𝜈𝑚 = 𝜖, 𝜏𝑚 = − . Γ𝑚 = Γ𝑚
′ = Ω.

So Γ = Γ′.

3) σm = ⇄ or σm = ↘. These two cases are similar to σ = ↙. We can get Γ = Γ′ from
the sketch of the last case.

3. CONCLUSIONS

𝜆𝑜-calculus is an unnamed explicit substitution calculus. Director strings are added to indicate

how substitutions should do. It offers an alternative to de Bruijn notation. It can be used in

theorem prover implementation. 𝜆𝑜-calculus fully simulates the β-reduction in classical λ-

calculus and it preserves the PSN property. In this paper, we propose an intersection type system

for 𝜆𝑜 and prove the type system satisfies the subject reduction property. If a term M can reduce

to N, if M is typed by ϱ, then N is also typed byϱ. In the future work, we will try to prove that a

typable term in this type system is strongly normalizing and try to show a term is strongly

normalizing if and only if it is typable in a certain intersection type.

Computer Science & Information Technology (CS & IT) 157

REFERENCES

[1] Barendregt, H., (1984) The Lambda Calculus: Its Syntax and Semantics, Elsevier

[2] Lescanne, P. (1994) “From λσ to λv a journey through calculi of explicit substitutions”, In:

Proceedings of POPL, pp 60–69.

[3] Bloo, R. & Rose, K., (1995) “Preservation of strong normalisation in named lambda calculi with

explicit substitution and garbage collection”, In: Computing Science in the Netherlands, pp 62–72.

[4] Bloo, R. & Geuvers, J., (1999) “Explicit substitution: on the edge of strong normalization”,

Theoretical Computer Science, Vol. 211, pp 375–395.

[5] Ayala-Rincón,M. & Kamareddine, F., (2001) “Unification via the λse-style of explicit substitution”,

Logic Journal of the IGPL, Vol 9, pp 489–523.

[6] Kennaway, R. & Sleep, R., (1988) “Director strings as combinators”, ACM Transactions on

Programming Languages and Systems, Vol. 10, No. 4, pp 602–626.

[7] Sreedhar.V. &Taghva, K.,(1993)“Capturing strong reduction in director string calculus”,Theoretical

Computer Science, Vol. 107, No. 2, pp 333–347.

[8] Fernández,M., Mackie,I. &Sinot,F.R.,(2005)“Lambda-calculus with director strings”, Applicable

Algebra in Engineering, Communication and Computing, Vol. 15, No.6, pp 393–437.

[9] Sinot, F.R.,Fernández,M. & Mackie,I.,(2003)“Efficient Reductions with Director Strings”, In:

Nieuwenhuis R. (eds) Rewriting Techniques and Applications. RTA 2003. Lecture Notes in

Computer Science, Vol 2706. Springer, pp 46-60.

[10] De Bruijn,N., (1972)“Lambda calculus notation with nameless

dummies”,IndagationesMathematicaeVol 34, pp 381–392.

[11] Coppo,M. &Dezani-Ciancaglini,M.,(1978)“A new type assignment for lambda-terms”,Archivfu ̈r

mathematischeLogik und Grundlagenforschung, Vol 19, pp 139–156.

[12] Coppo, M. &Dezani-Ciancaglini,M.,(1980)“An extension of the basic functionality theory for the λ-

calculus”, Notre Dame J. Formal Logic, Vol. 21, No.4, pp 685–693.

[13] Lengrand, S.,Lescanne, P.,Dougherty,D.,Dezani-Ciancaglini,M. & van Bakel.S.,(2004)“Intersection

types for explicit substitutions”, Information and Computation, Vol 189, No.1, pp 17 – 42.

[14] Dezani-Ciancaglini, D., Honsell, F. &Motohama, Y.,(2005)“Compositional characterisations of λ-

terms using intersection types”, Theoretical Computer Science, Vol. 340, No. 3, pp 459 – 495.

[15] Santo,J. E. &Ghilezan, S.,(2017)“Characterization of strong normalizability for a sequent lambda

calculus with co-control”, In: Proceedings of the 19th International Symposium on Principles and

Practice of Declarative Programmin, pp 163–174.

[16] Koletsos,G.,(2012)“Intersection Types and Termination Properties”,FundamentaInformaticae, Vol.

121, No.1-4, pp 185–202.

[17] Barendregt, H., Coppo, M. &Dezani-Ciancaglini,M. (1983) A filter lambda model and the

completeness of type assignment, The Journal of Symbolic Logic, Vol. 48, No.4,pp 931–940.

158 Computer Science & Information Technology (CS & IT)

[18] Dougherty, D. &Lescanne, P.,(2003) Reductions, intersection types, and explicit substitutions,

Mathematical Structures in Computer Science, Vol. 13, No.1, pp 55-85.

[19] Ventura, D. L., Ayala-Rincón,M., &Kamareddine,F., (2009) Intersection Type System with de Bruijn

Indices, The Many Sides of Logic, Sudies in Logic Vol. 21, W., Carnielli,Coniglio, M. E. and

D’Ottaviano, I. M. L., eds. pp. 557-576.

[20] Ventura,D. L.,Kamareddine,F.& Ayala-Rincón,M., (2015) Explicit substitution calculi with de bruijn

indices and intersection type systems, Logic Journal of the IGPL, Vol. 23, No. 2, pp 295–340.

[21] De Carvalho,D.,(2009)“Execution time of lambda-terms via denotational semantics and intersection

types”, Mathematical Structures in Computer Science Conference

AUTHORS

Xinxin Shen received the BE degree in 2011 from Henan University. She is currently a

Master student at College of Computer Science and Technology, Zhejiang University,

China. Her area of interests are logic, lambda calculus and type theory.

Kougen Zheng received the B.E. degree in 1986 and the PhD in 1990 from Warwick

University, UK. He has 23 years of teaching experience and 7 years of industry experience.

He is presently working as professor in Zhejiang University, China. His areas of interest

include Artificial Intelligence, Rail Traffic Signal Processing, Logic, Theory of

Computation.

