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ABSTRACT 
 

The operation of substitution in 𝜆-calculus is treated as an atomic operation. It makes that 

substitution operation is complex to be analyzed. To overcome this drawback, explicit 

substitution systems are proposed. They bridge the gap between the theory of the 𝜆-calculus and 

its implementation in programming languages and proof assistants. 𝜆𝑜-calculus is a name-free 

explicit substitution. Intersection type systems for various explicit substitution calculi, not 

including λo-calculus, have been studied by researchers. In this paper, we put our attention to 

𝜆𝑜-calculus. We present an intersection type system for 𝜆𝑜-calculus and show it satisfies the 

subject reduction property. 
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1. INTRODUCTION 
 

In 𝜆-calculus [1], the operation of substitution is treated as an atomic operation. But in the 

presence of variable binding, substitution is a complex operation to define and implement and 

may cause size explosion. Therefore, substitutions are delayed and explicitly recorded, in 

practice. Contrast to the 𝜆-calculus, explicit substitution decomposes the higher-order substitution 

operation into more atomic steps. In these last years, several explicit substitution systems have 

been proposed [2-5]. They are divided into two kinds: named, such as λx𝑔𝑐, and unnamed, such 

as 𝜆𝑠𝑒, 𝜆𝜎. Director strings were introduced by Kennaway and Sleep [6] and generalized by 

Sreedhar and Taghva [7] to capture strong reduction. Fern𝑎́ndez et al. [8-9] present the open 

calculus λ𝑜 which can fully simulate the 𝛽-reduction. 𝜆𝑜-calculus offers an alternative to de 

Bruijn notation [10] for unnamed calculi. Terms are annotated by director strings which indicate 

how the substitutions should do. All these explicit substitution calculi provide bridges between 

formal calculus and their concrete implementations. They lead to a more pertinent analysis of the 

correctness and efficiency of compilers, theorem proves, and proof-checkers. 

 

Intersection type was introduced in [11-12] to overcome the limitations of Curry’s type 

assignment system and to provide a characterization for the solvable terms of the λ-calculus. It 

extends simple types to include intersections and adds corresponding rules to the type assignment 

system. It has been used to characterize strongly (weakly or head) normalizing or solvable terms 

in many variants of the 𝜆-calculus [13-15] and to prove properties in λ-calculus, such as 

termination [16]. Moreover, approximation theorem, which is an important result in λ-calculus, 

also can be proved by intersection types [17].  
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Related works. Several intersection types for explicit substitution were studied. Dougherty and 

Lescanne [18] studied the relationship between intersection types and reduction (left reduction 

and head reduction) of λx.Lengrand [13] characterized strongly normalizing terms of λxgcwith 

intersection types.Ventura et al. [19] presented an intersection type system for λdband showed the 

subject reduction property. Ventura et al. [20] introduced intersection type systems for 

𝜆𝑠𝑒 , 𝜆𝜎, 𝜆𝜈-calculus and proved the subject reduction property for them. The intersection type 

system in [20] cannot be directly adapted to 𝜆𝑜-calculus because there are no number indexes for 

variables. We cannot find the type of the variable from the type environment considered by 

searching the index. So, the difficulty for the intersection type system for 𝜆𝑜is to build the 

correspondence from variables to the type environment. 

 

To our knowledge the intersection type system for 𝜆𝑜-calculus has not been studied. In this paper, 

we introduce an intersection type system for 𝜆𝑜-calculus and prove the subject reduction property.  

The rest of this paper is structured as follows. In Section 2, we provide the term syntax of 𝜆𝑜-

calculus. We present the intersection type system for 𝜆𝑜- calculus and show the subject reduction 

property in Section 3. We conclude in Section 4. 

 

2. LAMBDA CALCULUS WITH DIRECTOR STRINGS 𝛌𝒐 
 

2.1. Term Syntax 
 

We recall some definitions and properties of the  λo  from [8], adding some notations. 
 

Definition 1. (𝛌-calculus with Director Strings [8])  

 

Four syntactic categories are defined: 

 

• Directors: We use five special symbols, called directors, ranged over by 𝛼, 𝛾, 𝛿: 
1. ‘↘’ indicates that the substitution should be propagated only to the right branch of a binary 

construct (application or substitution, as given below). 

2. ‘↙’ indicates that the substitution should be propagated only to the left branch of a binary 

construct. 

3. ‘⇄’ indicates that the substitution should be propagated to both branches of a binary construct. 

4. ‘↓’ indicates that the substitution should traverse a unary construct (abstraction and variables, 

see below). 

5. ‘−‘ indicates that the substitution should be discarded (when the variable concerned does not 

occur in a term). 

 

• Strings: A director string is either empty, denoted by ϵ, or built from the above symbols (so is 

of the form  𝛼1𝛼2 ⋯ 𝛼𝑛 where the  𝛼𝑖 's are directors). We use Greek letters such as 𝜌, 𝜎 ...  to 

range over strings.  

 

• The length of a string σ is denoted by |σ|. If 𝛼 is a director, then αn  denotes a string of 𝛼 's of 

length n. If 𝜎 is a director string of length 𝑛 and 1 ≤  𝑖 ≤  𝑗 ≤  𝑛 ,  𝜎𝑖  denotes the 𝑖 th director 

of 𝜎 and  𝜎\𝑖 = 𝜎1 ⋯ 𝜎𝑖−1𝜎𝑖+1 ⋯ 𝜎𝑛  is  σ  where the i th director has been removed.  𝜎𝑖..𝑗 =

𝜎𝑖 ⋯ 𝜎𝑗 is our notation for substrings. We use 𝜎+  to represent the σ  where all - have been 

removed. 
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|𝜎|𝑙 denotes the number of ↙  and  ⇄ occurring in σ ,  |𝜎|𝑟  the number of ↘  and ⇄,  |𝜎|𝑙𝑟  the 

number of ⇄, and  |𝜎|+  the number of directors that are not −. |𝜎|−  is the number of directors 

that are −. 

 

• Preterms: Let σ range over strings, k be a natural number and 𝒕, 𝒖 range over preterms, which 

are defined by the following grammar:   𝑡: : = □𝜎| (𝜆 𝑡)𝜎|(𝑡𝑢)𝜎| 𝑡[𝑘/𝑢]^𝜎 .   

 

• Terms: Well-formed terms are preterms that recursively satisfy the conditions in Figure 1. 

where  𝒰 =  (↓   | −)∗  and  ℬ =  (↙ |  ⇄ | ↘ | −)^ ∗ . 

 

 
 

Figure 1.Term Condition 

 

A variety of different term constructs [8]:  

 

• □presents variables, 

• (𝜆𝑡𝜌)𝜎  is an abstraction, 

• (𝒕𝒖)𝜎 is an application, 

• 𝒕[𝑘/𝒖]𝜎  is an explicit substitution, meaning that the variable corresponding to the 𝑘𝑡ℎ 

director in 𝒕's string is to be replaced by 𝒖 .   
 

Remark 1.  

 

• Given a term 𝑡𝜌,  |𝜌|+  is equal to the number of free variables in 𝑡.  

• In an abstraction  (𝜆𝑡𝜌)𝜎, the last director in  𝜌  corresponds to the bound variable. 

• Parentheses will be dropped whenever we can, and omit the empty string 𝜖 unless it is 

essential. 

 

We give an example:  

 

Example 1. If we consider variables  {𝑦, 𝑧, 𝑤} , and the pure  λ -term  𝑡 = 𝜆 𝑥. 𝑥𝑦𝑤. The term in  

λ𝑜-calculus corresponding to (use the function defined in [8]) 𝑡 is ((λ ( □↓□↓ )↘ ↙□↓)↙  ↘ ↙)↓− ↓ . 

 

2.2. Reduction rules 
 

The Beta rule is aimed at eliminating  β-redexes and introduce an explicit substitution. It is 

defined by  
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where 𝜏 = 𝜓𝑏(𝜎, 𝜌)with 𝜑𝑏  defined in Figure 2. 

 

Definition 2. (Reduction Rules [8]) 

 

Reduction rules in 𝜆𝑜 contain the Beta rule and propagation rules in  

Figure 2 with: 

 

 
 

Other functions used in the propagation rules are defined in  

Figure 3. The functions used in the propagation rules just compute the ad hoc director strings. 

They are generated recursively in the same way as above from the tables  

Figure 3 [8]. 
 

 
 

Figure 2. Propagation Rules 𝒫 

 

 
 

Figure 3. Functions used in the Propagation Rules 
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3. THE TYPE SYSTEM 
 

3.1  Intersection Types 
 

We take the idea from [20]. Environments are sequences of types instead of type assignments and 

types are non-idempotent intersection types [21]. 

 

 Definition 3.  

 

1. Intersection types are defined by: 

 

𝜚, 𝜍 ∈  𝕋 ∷=  𝒜 | 𝕌 →  𝕋 

𝜇, 𝜉 ∈  𝕌 ∷= Ω  𝕌 ∩ 𝕌 | 𝕋 

 

where 𝒜  is a denumerable infinite set of type variables. 

 

2. Environments are ordered lists of types 𝜇 ∈  𝕌 , defined by  Γ ∶: =  𝑛𝑖𝑙 | 𝜇. Γ .  nil is the empty 

environment. We use Γ, Δ..to denote environments. 

 

3. A term t is typable if there are some Γ, 𝜚  such that  Γ ⊢ 𝒕: 𝜚 . 

 

|Γ| is the length of  Γ  and |𝑛𝑖𝑙|  =  0. Γ𝑖 is the i th type in Γ.  Γ<𝑖 is the first 𝑖 − 1 types in Γ and 

Γ≤𝑖, Γ>𝑖, Γ≥𝑖  are similarly defined. If 𝑖 =  0, then Γ≤0 . Γ = Γ<0. Γ = Γ. If 𝑖 is equal to the length 

of  Γ, then Γ. Γ≥𝑖  = Γ. Γ>0  = Γ. 

 

Γ∖𝑖  = Γ<𝑖 .  Γ>𝑖, is Γ  where the 𝑖 th type has been removed.  Γ𝑖..𝑗  = Γ𝑖 . ⋯ . Γ𝑗, is a sub-environment 

of Γ.  Γ+  is  Γ  where all   −  has been removed. Ω𝑛  denotes the environment  Ω. ⋯ . Ω  of length 

𝑛. 

 

3.2  Type System for  𝝀𝒐 
 

We first define some functions which will be used in defining the typing rules. It gets a new 

environment from two environments according to a director string. 

 

Definition 4. The function Intersection(Γ, Δ, 𝜎)  is defined by Algorithm 1. 
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Definition 5. The function AddErase (Γ, 𝜎)  is defined by Algorithm 2. 

 

 
Definition 6. The function Drop(Γ, 𝜎)  is defined by Algorithm 3. 

 

 
 

Definition 7. (Typing Rules) 

 

Typing rules for  λo  are defined by Figure 4 where (*) is 𝜌 =𝜎_+ and functions are defined in 

Definition 4, Definition 5 and Definition 6. 

 

 
 

Figure 4. Typing Rules 

 

Lemma 1. (Generation Lemma) 

 

1. 𝛤 ⊢  𝑡^𝜎: 𝜚 and𝜌 = 𝜎+ , then Γ =  AddErase(𝛤′, 𝜎)  and  Γ′ ⊢  𝑡𝜌: 𝜚. 

2. 𝛤 ⊢  □^𝜎: 𝜚, if 𝜎𝑖 ≠  − then𝛤𝑖  = 𝜚. 

3. 𝛤 ⊢  (𝜆𝒕)𝜎 ∶ 𝜚, then  𝜚 = 𝜇 → 𝜍  for some  𝜇 ∈  𝕌  and  𝜍 ∈ 𝕋 , where  𝛤+. 𝜇 ⊢
 𝑡𝜌: 𝜚. 

4. 𝛤 ⊢  (𝒕𝒖)𝜎 ∶ 𝜚, then 𝛤 =  Intersection(𝛤′, 𝛥′, 𝜎)  such that  𝛤′ ⊢  𝒕: ∧ 𝜍𝑘 → 𝜚,
𝛥′ = ∩1

𝑛 𝛥𝑘  and  ∀ 1 ≤  𝑘 ≤  𝑛, 𝛥𝑘 ⊢  𝒖: 𝜍𝑘. 
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5. 𝛤 ⊢  (𝑡𝜌[𝑖/ 𝒖])𝜎: 𝜚  and  𝜌𝑖 ≠  − , then  𝛤 =  Intersection(𝛤∖𝑖
′ , 𝛥′, 𝜎) such that  

𝛤<𝑖
′ .∧ 𝜍𝑘 . 𝛤>𝑖 ⊢  𝒕: 𝜚, 𝛥′ = ∩1

𝑛 𝛥𝑘  and  ∀ 1 ≤  𝑘 ≤  𝑛, 𝛥𝑘 ⊢  𝒖 }: 𝜍𝑘. 

6. 𝛤 ⊢  (𝑡𝜌[𝑖/ 𝒖]))𝜎: 𝜚  and ρi  =  − , then  (Γ≤|ρ|)∖i
⊢  tρ: ϱ  and  𝛥 ⊢  𝒖: 𝜍. 

 

Proof. By induction on the structure of derivations. 

 

Lemma 2.  𝜞 ⊢  𝒕𝝆: 𝝔 , then  |𝛤|  =  |𝜌|  and the 𝛤𝑖 is the type of the variable which 𝜌𝑖 

corresponds to. 

 

Proof. Induction on the structure of tρ. 

 

1. □𝜌, it is immediately.  

2. (𝜆𝑡𝜌)𝜎. By Lemma 1 𝛤+. 𝜇 ⊢ 𝑡𝜌: 𝜚  for some μ ∈  𝕌 and  ς ∈ 𝕋, where  ϱ = μ →
ς. By induction hypothesis, |Γ+. μ|  =  |ρ|  and  Γ+i  is the type of ρ𝑖.  By term 

conditions,  |ρ|  =  |σ|+  +  1. From the definition of AddErase, we can 

get  |Γ|  =  |σ|  and Γi  is the type ofσi. 

3. (t𝜌uν)σ. By Lemma 1,  Γ = Intersection(Γ′, Δ′, σ)  such that  Γ′ ⊢  t𝜌 : ∧ ςk →

ϱ, Δ′ = ∩1
n Δk and  ∀ 1 ≤  k ≤  n, Δk ⊢  𝑢𝜈 ∶ ςk . By induction hypothesis, 

|Γ′|  =  |ρ|  =  |σ|l , Γi
′  is the type of the variable which ρi  corresponds to and  

|Δ′|  =  |Δk|  =  |ν|  =  |σ|r , Δi
′ is the type of the variable which  νi  corresponds 

to. From the definition of the function Intersection, we easily get   

|Intersection(Γ′, Δ′, σ)|  =  |σ|  and Γi is the type of the variable whichσi  

corresponds to. 

4. Γ ⊢  (t𝜌[i/𝐮])𝜎: ϱ  and  ρi ≠  −, it is similar to the last case. 

5. Γ ⊢  (t𝜌[i/𝐮])𝜎: ϱ  and ρi = −, it is immediately by induction hypothesis and the 

reduction rule. 

 

Theorem 1. (Subject Reduction) 

 

 
 

Proof. By the verification of subject reduction for each reduction rule of the  λo-calculus. 

 

• (Beta): Let  Γ ⊢  ((λ 𝐭)ρ𝐮)^σ ∶ ϱ . We want to prove that Γ ⊢  (𝐭[|ρ|+  +  1 / 𝐮])𝜏: ϱ. By 

Lemma 1, we have the following derivation: 

 

 
 

By Lemma 2, |Γ′|  =  |ρ|  and  Γi
′  is the type of the variable which ρi corresponds to. Γ1 =

 Intersection}(Γ2, Δ′, τ) ⊢   (𝐭[|ρ|+  +  1 / 𝐮])τ: ϱ  by rule (cut). Suppose the variable σi  

corresponding to is x, observing the procedure and the definition of φb: 

1. 𝜎𝑖  = ↘. Then 𝜏𝑖  = ↘;  Γ1𝑖  = Δ′
|𝜏1..𝑖|𝑟

.  Γ𝑖  = Δ′
|𝜎1..𝑖|𝑟

. They are the type of 𝒖𝑥 

(variable 𝑥  in  𝒖 ).  Γ1𝑖  = Γ𝑖 .  
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2. 𝜎𝑖  = ↙.  𝜎𝑖 indicates the substitution is propagated to the left branch of  ((𝜆𝒕)𝜌𝒖). 

If 𝜌𝑖 ≠  −,  𝜏𝑖  = ↙ = 𝜎𝑖.  Γ𝑖  is the type of 𝒕𝑥. Let 𝑚 =  |𝜎1..𝑖|𝑙 and  𝑛 =  |𝜌1..𝑚|+ .  

Γ𝑖  =  Γ2𝑛. 𝜏𝑖  indicate the substitution is propagated to the left branch 𝒕. It is the 

type of 𝒕𝑥.  Γ1𝑖  = Γ2|𝜏1..𝑖|𝑙
 . If 𝜌𝑖  =  −, then 𝜏𝑖  =  −. The variable does not occur 

in the two terms. Then Γ𝑖  = Ω = Γ1𝑖. 

3. 𝜎𝑖  = ⇄ indicates the substitution should be propagated into both branches. If 𝜌𝑖 ≠
 −,  𝜏𝑖  = ⇄.Let 𝑚 =  |𝜎1..𝑖|𝑙 and 𝑛 =  |𝜎1..𝑖|𝑟.  𝑝 =  |𝜌1..𝑚|+ . Γ𝑖  = Γ2𝑝 ∩ (∩

Δk)
n
. It is intersection of the type of 𝒕𝑥 and 𝒖𝑥.𝜏𝑖  = ⇄ indicate the substitution 

should be propagated into both branches. Let 𝑚′ =  |𝜏1..𝑖|𝑙  and  𝑛′ =  |𝜏1..𝑖|𝑟.  

Γ1𝑖  = Γ2𝑚′ ∩  (∩ Δ𝑘)
𝑛′ . It is intersection of the type of 𝒕𝑥 and 𝒖𝑥. If 𝜌𝑖  =  −,

𝜏𝑖  = ↘. Then Γ1𝑖  = Δ|𝜏1..𝑖|𝑟

′  , it is the type of 𝒖𝑥.  Γ𝑖  = Δ|𝜎1..𝑖|𝑟

′ , it is also the type of 

𝒖𝑥.  

4. 𝜎𝑖  =  −, then 𝜏𝑖  =  −. So Γ1𝑖  = Γ𝑖. 

 

Therefore,  Γ = Γ1. 

 

• (Var): Let Γ ⊢  (□𝜌[𝑖/ 𝒗])𝜎: 𝜚 and 𝜌𝑖  = ↓. We want to prove that Γ ⊢  𝒗: 𝜚.By 

Lemma 1,  Γ = Intersection(Γ∖𝑖
′ , Δ′, 𝜎), Γ<𝑖

′ .∧ 𝜍𝑘 . Γ>𝑖
′ ⊢  □𝜌 ∶ 𝜚 and ∀ 1 ≤  𝑘 ≤

 𝑛Δ𝑘 ⊢  𝒗: 𝜍𝑘.By term definition, 𝜌𝑗  =  −  for all𝑗 ≠  𝑖. So Γ∖𝑖
′  =

Ω|𝜌|−1.Observing the procedure of function Intersection. 

 

 𝜎𝑖  = ⇄  or  𝜎𝑖  = ↘ .  Γ𝑖  = Ω ∩ Δ|𝜎1..𝑖|𝑟

′  = Δ|𝜎1..𝑖|𝑟

′ . i.e.  Γ𝑖 is type of the  {|𝜎1..𝑖|𝑟th 

variable.  

 𝜎𝑖  =  − or 𝜎𝑖  = ↙.  Γ𝑖  = Ω.  

 

By Lemma 2, it coincides with the definition of 𝜋′.  
 

• (Erase): Let  Γ ⊢  (𝑡𝜌[𝑖/𝒗])𝜎: 𝜚 and 𝜌𝑖  =  −. We want to prove that Γ ⊢  𝑡𝜏 ∶ 𝜚.By 

Lemma 1, and Lemma 2, it is easily to get that Drop( Γ, 𝜎 ) is coincides with 𝜋. 

 

• (Lam): Let Γ ⊢  ((𝜆𝒕)𝜌[𝑖/ 𝒗])𝜎: 𝜚 and 𝜌𝑖  = ↓. We want to prove that Γ ⊢  (𝜆(𝒕[𝑖/
 𝒗])𝜈.↙)𝜏: 𝜚.By Lemma 1, we have the following derivation: 

 

 
where  𝜇 → 𝜁 = 𝜚. Hence   

 
 

Observing the definition of 𝜙𝑑, there are no − 's in 𝜈. Suppose the 𝑗 th variable is  𝑥. 
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1. 𝜎𝑗 = ↙, 𝜌𝑗 =  −, 𝜈𝑗 = 𝜖, 𝜏𝑗 = −.  Γ2𝑗 = Ω = Γ𝑗.  

 

2. 𝜎𝑗 = ↙, 𝜌𝑗 = ↓, 𝜈𝑗 = ↙, 𝜏𝑗 = ↓.𝜎𝑗 = ↙ indicates the substitution is propagated to the 

left branch  (𝜆 𝒕)𝜌.  Let 𝑚 =  |𝜎1..𝑗|
𝑙
.  Γ𝑗 is type of the variable  𝜌𝑚 corresponding to, 

indicated by 𝒕𝑥 (variable 𝑥  in  𝒕 ).  Γ𝑗 = Γ∖𝑖
′

𝑚
. 𝜈𝑗  = ↙ indicates the substitution is 

propagated to the left branch 𝒕.  Γ2𝑗  is the the type of 𝒕𝑥. Let 𝑚′ =  |𝜏1..𝑗|
+

 and 𝑛′ =

 |𝜈. ↙ |𝑙.   Γ2𝑗  = Γ1𝑚′ = Γ∖𝑖
′

𝑛′. 

 

3. 𝜎𝑗 = ↘, 𝜌𝑗 = 𝜖, 𝜈𝑗  = ↘, 𝜏𝑗  = ↓. Let 𝑚 be  |𝜏1..𝑗|
+

. The type of Γ2𝑗  = Γ1𝑚  =

Δ|𝜈1..𝑚|𝑟

′
. Γ𝑗 = Δ|𝜎1..𝑗|

𝑟

′
. 𝜎𝑗  = ↘ indicates the substitution is propagated to the right 

branch 𝒗. Let 𝑚 =  |𝜎1..𝑗|
𝑟
.  Γ𝑗 is the type of 𝒗𝑥. Γ𝑗  =  (∩ Δ𝑘)

𝑚
. 𝜈𝑗  = ↘ indicates 

the substitution is propagated to the right branch  𝒗. Γ2𝑗  is the type of 𝒗𝑥. Let 𝑚′ =

 |𝜏1..𝑗|
+

  and  𝑛′ =  |𝜈. ↙1..𝑗|
𝑙
.  Γ2𝑗  = Γ1𝑚′  = Γ∖𝑖

′

𝑛′
. 

 

4. 𝜎𝑗  = ⇄, 𝜌𝑗  = ↓, 𝜈𝑗  = ⇄, 𝜏𝑗  = ↓. 𝜎𝑗  = ⇄ indicates the substitution is propagated to 

both branches 𝒕  and 𝒗. Let 𝑚 =  |𝜎1..𝑗|
𝑙
, 𝑛 =  |𝜎1..𝑗|

𝑟
.  Γ𝑗 is intersection of the type 

of 𝒕𝑥 and 𝒖𝑥. Γ𝑗  =   Γ∖𝑖
′

𝑚
∩  (∩ Δ𝑘)

𝑛
 . 𝜈𝑗  = ⇄, 𝜏𝑗  = ↓ indicates the substitution is 

propagated to both branches 𝒕 and ↘. Γ2𝑗is intersection of the type of 𝒕𝑥 and 𝒗𝑥. Let 

𝑚′ =  |𝜏1..𝑗|
+

, 𝑛′ =  |𝜈. ↙1..𝑚|𝑙 , 𝑝′ =   |𝜈. ↙1..𝑚|𝑟.  Γ2𝑗  = Γ1𝑚  = Γ∖𝑖
′

𝑛′ ∩ (∩ Δ𝑘)
𝑝′. 

 

5. 𝜎𝑗  = ⇄, 𝜌𝑗  =  − , 𝜈𝑗  = ↘, 𝜏𝑗 = ↓.  𝜎𝑗 =⇄ indicates the substitution is propagated to 

both branches  𝒕 and 𝒗. Γ𝑗 is intersection of the type of 𝒕𝑥 and 𝒗𝑥.  𝜌𝑗  =  −, the type 

of 𝒕𝑥 is Ω. So Γ𝑗 is the type of 𝒗𝑥 . Let 𝑛 =  |𝜎1..𝑗|
𝑟
 ,  Γ𝑗  =  (∩ Δ𝑘)

𝑛
.Let 𝑚′ =

|𝜏1..𝑗|
+

, 𝑛′ =  |𝜈1..𝑚|𝑟. The substitution is propagated to right branch 𝒗. Γ2𝑗is the type 

of 𝒗𝑥 . Γ2𝑗 = Γ1𝑚  =  (∩ Δ𝑘)
𝑛′.  

 

6. 𝜎𝑗  =  −, 𝜌𝑗  = 𝜖, 𝜈𝑗  = 𝜖, 𝜏𝑗  =  −.  Γ2𝑗 = Ω = Γ𝑗 . 

So Γ2 = Γ. 

 

• 𝐴𝑝𝑝1, 𝐴𝑝𝑝2, 𝐴𝑝𝑝3 and Comp are similar. We just show the case 𝐴𝑝𝑝1. Let Γ ⊢
 ((𝒕𝒖)𝜌[𝑖/𝒗])𝜎: 𝜚 and 𝜌𝑖  = ↙. We want to prove that Σ ⊢ ((𝒕[𝑗/𝒗])𝜈𝒖)𝜏: 𝜚. By Lemma 1, 

we have the following derivation. 
 

 
Hence 

 



156 Computer Science & Information Technology (CS & IT) 

 

For better reading, we use variable names. Suppose the 𝑚th variable is 𝑥. 

 

1) 𝜎𝑚  =  −, 𝜌𝑚  = 𝜖, 𝜈𝑚  = 𝜖, 𝜏𝑚  =  − . The 𝑚 th variable does not occurs in ((𝒕𝒖)𝜌[𝑖/
𝒗])𝜎 and  ((𝒕[𝑗/𝒗])𝜈𝒖)𝜏. Γ𝑚

′  = Γ𝑚  = Ω. 

 

2) 𝜎𝑚  = ↙ . The 𝑚 th substitution is only considered on the left branch of  ((𝒕𝒖)𝜌[𝑖/𝒗])𝜎. 

It is the 𝑛 =  |𝜎1..𝑚|𝑙th in 𝜌. 

 

a. 𝜌𝑚  = ↘, 𝜈𝑚  = 𝜖, 𝜏𝑚  = ↘. The 𝑛 th substitution is only considered on the right brach 

of  𝒕𝒖. It is the 𝑝 =  |𝜌1..𝑛|𝑟 th in 𝒖 's director string. The variable 𝜌𝑝  corresponding to 

is denoted by 𝒖𝑥  (variable 𝑥 in 𝒖). So Γ𝑚  =  (∩ Δ𝑘)
𝑝
 . It is the type of  𝒖𝑥. The 𝑚 th 

substitution is only considered on the right branch of ((𝒕[𝑗/𝒗])𝜈𝒖). It is the 𝑛′ =
 |𝜏1..𝑚|𝑟th in 𝒖 's director string. So Γ𝑚

′  =  (∩ Δ𝑘)
𝑛′. It is the type of  𝒖𝑥. 

 

b. 𝜌𝑚  = ↙, 𝜈𝑚  = ↙, 𝜏𝑚 = ↙. The 𝑛th substitution is only considered on the left brach of 

𝒕𝒖. It is the 𝑝 =  |𝜌1..𝑛|𝑙th in 𝒕 's director string. The variable is denoted by 𝒕𝑥.  Γ𝑚  =
Γ1𝑝 and it is the type of 𝒕𝑥. The 𝑚 th substitution is only considered on the left branch 

of ((𝒕[𝑗/𝒗])𝜈𝒖). It is the 𝑛′ =  |𝜏1..𝑚|𝑙th in (𝒕[𝑗/𝒗]). Then it is the 𝑝′ =  |𝜈1..𝑛′|𝑙 in  𝒕 

's string. So Γ𝑚
′  = Γ1𝑝′ and it is the type of 𝒕𝑥. 

 

c. 𝜌𝑚  = ⇄, 𝜈𝑚  = ↙, 𝜏𝑚  = ⇄ . The 𝑛 th substitution is considered both on the left and 

right braches of 𝒕𝒖. It is the 𝑝 =  |𝜌1..𝑛|𝑙th in  𝒕 's string and  𝑞 =  |𝜌1..𝑛|𝑟th in 𝒖 's 

string.  Γ𝑚  = Γ1𝑝 ∩  (∩ Γ𝑘)
𝑞
. It is intersection of the type of 𝒕𝑥 and 𝒖𝑥 . The 𝑚 th 

substitution is considered both on the left and right branches of ((𝒕[𝑗/𝒗])𝜈𝒖). It is the  

𝑛′ =  |𝜏1..𝑚|𝑙th in 𝜈. Then it is the 𝑝′ =  |𝜈1..𝑛′|𝑙 in  𝒕 's string.  𝑞′ =  |𝜏1..𝑚|𝑟 in 𝒖's 

string. So Γ𝑚
′  = Γ1𝑝′ ∩ (∩ Γ𝑘)

𝑞′. It is intersection of the type of 𝒕𝑥  and 𝒖𝑥. 

 

d. 𝜌𝑚 =  −, 𝜈𝑚 = 𝜖, 𝜏𝑚 =  − . Γ𝑚  = Γ𝑚
′  = Ω. 

So Γ = Γ′. 
 

3) σm  = ⇄ or σm  = ↘. These two cases are similar to σ = ↙. We can get Γ = Γ′ from 
the sketch of the last case. 

 

3. CONCLUSIONS 
 

𝜆𝑜-calculus is an unnamed explicit substitution calculus. Director strings are added to indicate 

how substitutions should do. It offers an alternative to de Bruijn notation. It can be used in 

theorem prover implementation. 𝜆𝑜-calculus fully simulates the β-reduction in classical λ-

calculus and it preserves the PSN property. In this paper, we propose an intersection type system 

for 𝜆𝑜 and prove the type system satisfies the subject reduction property. If a term M can reduce 

to N, if M is typed by ϱ, then N is also typed byϱ. In the future work, we will try to prove that a 

typable term in this type system is strongly normalizing and try to show a term is strongly 

normalizing if and only if it is typable in a certain intersection type.  
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